A Note on the Optimal Addition of Abscissas to Quadrature Formulas of Gauss and Lobatto Type

By Robert Piessens and Maria Branders

Abstract

An improved method for the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type is given.

1. Introduction. We consider the quadrature formula

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x \simeq \sum_{k=1}^{N} \alpha_{k} f\left(x_{k}\right)+\sum_{k=1}^{N+1} \beta_{k} f\left(\xi_{k}\right) \tag{1}
\end{equation*}
$$

where the x_{k} 's are the abscissas of the N-point Gaussian quadrature formula. We want to determine the additional abscissas ξ_{k} and the weights α_{k} and β_{k} so that the degree of exactness of (1) is maximal. This problem has already been discussed by Kronrod [1] and Patterson [2] and it is well known that the abscissas ξ_{k} must be the zeros of the polynomial $\phi_{N+1}(x)$ which satisfies

$$
\begin{equation*}
\int_{-1}^{+1} P_{N}(x) \phi_{N+1}(x) x^{k} d x=0, \quad k=0,1, \cdots, N \tag{2}
\end{equation*}
$$

where $P_{N}(x)$ is the Legendre polynomial of degree N. Thus, $\phi_{N+1}(x)$ must be an orthogonal polynomial with respect to the weight function $P_{N}(x)$. Then, the weights α_{k} and β_{k} can be determined so that the degree of exactness of (1) is $3 N+1$ if N is even and $3 N+2$ if N is odd.

Szegö [3] proved that the zeros of $\phi_{N+1}(x)$ and $P_{N}(x)$ are distinct and alternate on the interval $[-1,+1]$. Kronrod [1] gave a simple method for the computation of the coefficients of $\phi_{N+1}(x)$. This method requires the solution of a triangular system of linear equations, which is, unfortunately, very ill-conditioned. Patterson [2] expanded $\phi_{N+1}(x)$ in terms of Legendre polynomials. The coefficients of this expansion satisfy a linear system of equations which is well-conditioned, although its construction requires a certain amount of computing time.

The present note proposes the expansion of $\phi_{N+1}(x)$ in a series of Chebyshev polynomials. We also give explicit formulas for the weights α_{k} and β_{k}. Finally, we consider the optimal addition of abscissas to Lobatto rules. As compared with Patterson's method, our method has three advantages:
(i) It leads to a considerable saving in computing time since the formulas are much simpler.
(ii) The loss of significant figures through cancellation and round-off is slightly reduced, as we verified experimentally. This is in agreement with some theoretical results given by Gautschi [4].
(iii) It is applicable for every value of N, while Patterson's method fails in the

[^0]Lobatto case for $N=7,9,17,22,27,35,36,37,40, \cdots$, since some of the denominators in his recurrence formulae become zero.
2. Optimal Addition of Abscissas to Gaussian Quadrature Formulas. It is evident that $\phi_{N+1}(x)$ is an odd or even function depending on whether N is even or odd. Thus, $\phi_{N+1}(x)$ can be expressed as

$$
\begin{equation*}
\phi_{N+1}(x)=\sum_{k=0}^{m} b_{k} T_{2 k}(x), \quad \text { if } N \text { is odd } \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{N+1}(x)=\sum_{k=0}^{m} b_{k} T_{2 k+1}(x), \quad \text { if } N \text { is even, } \tag{4}
\end{equation*}
$$

where $m=[(N+1) / 2]$.
It is clear that the polynomial $\phi_{N+1}(x)$ is only defined to within an arbitrary multiplicative constant. For the sake of convenience, we assume $b_{m}=1$.

From (2), we derive the condition

$$
\begin{equation*}
\int_{-1}^{+1} P_{N}(x) \phi_{N+1}(x) T_{k}(x) d x=0, \quad k=0,1, \cdots, N \tag{5}
\end{equation*}
$$

In order to calculate the coefficients $b_{k}, k=0,1, \cdots, m-1,(3)$ or (4) is substituted in (5). This leads to the system of equations

$$
\begin{align*}
& b_{m-1}=\tau_{1}-1 \\
& b_{m-k}=\sum_{i=1}^{k-1} b_{m-k+i} \tau_{j}+\tau_{k}, \quad k=2,3, \cdots, m \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\tau_{k}=-\int_{-1}^{+1} P_{N}(x) T_{N+2 k}(x) d x / \int_{-1}^{+1} P_{N}(x) T_{N}(x) d x \tag{7}
\end{equation*}
$$

In order to derive a recurrence formula for τ_{k}, we consider the integral

$$
\begin{equation*}
J=\int_{-1}^{+1}\left[x P_{N}(x)-P_{N+1}(x)\right] T_{l}(x) d x \tag{8}
\end{equation*}
$$

Using a well-known property of the Chebyshev polynomials, we obtain

$$
\begin{equation*}
J=\frac{1}{2} \int_{-1}^{+1}\left[x P_{N}-P_{N+1}\right] d\left(\frac{T_{l+1}}{l+1}-\frac{T_{l-1}}{l-1}\right), \tag{9}
\end{equation*}
$$

and, by integrating by parts, this integral can be expressed as

$$
\begin{equation*}
J=\frac{N}{2(l+1)} I_{N, l+1}-\frac{N}{2(l-1)} I_{N, l-1} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{N, l}=\int_{-1}^{+1} P_{N}(x) T_{l}(x) d x \tag{11}
\end{equation*}
$$

On the other hand, using a property of the Legendre polynomials, (8) can be transformed into

$$
J=\frac{1}{N+1} \int_{-1}^{+1}\left(1-x^{2}\right) T_{l}(x) d\left(P_{N}(x)\right)
$$

which can be expressed as

$$
\begin{equation*}
J=\frac{2+l}{2(N+1)} I_{N, l+1}+\frac{2-l}{2(N+1)} I_{N, l-1} \tag{12}
\end{equation*}
$$

Since $\tau_{k}=I_{N, N+2 k} / I_{N, N}$, the recurrence formula

$$
\begin{equation*}
\tau_{k+1}=\frac{[(N+2 k-1)(N+2 k)-(N+1) N](N+2 k+2)}{[(N+2 k+3)(N+2 k+2)-(N+1) N](N+2 k)} \tau_{k} \tag{13}
\end{equation*}
$$

where $\tau_{1}=(N+2) /(2 N+3)$ can be easily derived from (10) and (12).
System (6) is easier to construct than the corresponding system of Patterson [2], inasmuch as his method requires a set of recursions of variable lengths, while in our method only one recursion is needed. Moreover, further economy is achieved in solving the equation $\phi_{N+1}(x)=0$, since, using a modification of Clenshaw's algorithm of summation, an odd or even Chebyshev series can be evaluated more efficiently than an odd or even Legendre series [5, p. 10]. Indeed, the computing time can be halved.

Explicit formulas for the weights are

$$
\begin{array}{ll}
\alpha_{k}=\frac{C_{N}}{P_{N}^{\prime}\left(x_{k}\right) \phi_{N+1}\left(x_{k}\right)}+\frac{2}{N P_{N-1}\left(x_{k}\right) P_{N}^{\prime}\left(x_{k}\right),}, & k=1,2, \cdots, N \\
\beta_{k}=\frac{C_{N}}{\phi_{N+1}^{\prime}\left(\xi_{k}\right) P_{N}\left(\xi_{k}\right)}, & k=1,2, \cdots, N+1 \tag{15}
\end{array}
$$

where $C_{N}=2^{2 N+1}(N!)^{2} /(2 N+1)!$.
3. Optimal Addition of Abscissas to Lobatto Quadrature Formulas. We now consider the quadrature formula

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x \simeq \sum_{k=0}^{N+1} \alpha_{k} f\left(x_{k}\right)+\sum_{k=1}^{N+1} \beta_{k} f\left(\xi_{k}\right) \tag{16}
\end{equation*}
$$

where the x_{k} 's are abscissas of the Lobatto quadrature formula. Consequently, $x_{0}=-1, x_{N+1}=+1$ and $x_{1}, x_{2}, \cdots, x_{N}$ are the zeros of the Jacobi polynomial $P_{N}{ }^{(1,1)}(x)$. It is our purpose to determine the free abscissas ξ_{k} and the weights α_{k} and β_{k} so that the degree of exactness of (16) is maximal. Then, ξ_{k} must be a zero of the polynomial $\phi_{N+1}(x)$ which satisfies

$$
\begin{equation*}
\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)}(x) \phi_{N+1}(x) T_{k}(x) d x=0, \quad k=0,1,2, \cdots, N \tag{17}
\end{equation*}
$$

Again, we express $\phi_{N+1}(x)$ in terms of Chebyshev polynomials as in (3) or (4), according to the parity of N. The coefficients b_{k} can be found by solving the system (6) where

$$
\begin{equation*}
\tau_{k}=-\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{N+2 k} d x / \int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{N} d x \tag{18}
\end{equation*}
$$

Using the relation

$$
\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{l} d x=\frac{1}{N+2}\left[(l+2) I_{N+1, l+1}-(l-2) I_{N+1, l-1}\right]
$$

where $I_{N, l}$ is defined by (11), the recurrence formula

$$
\begin{equation*}
\tau_{k+1}=\frac{[(N+2 k-1)(N+2 k-2)-(N+1)(N+2)](N+2 k+2)}{[(N+2 k+3)(N+2 k+4)-(N+1)(N+2)](N+2 k)} \tau_{k} \tag{19}
\end{equation*}
$$

can be derived from (13).
The starting value for (19) is

$$
\tau_{1}=3(N+2) /(2 N+5)
$$

The expressions for the weights are

$$
\begin{align*}
& \alpha_{k}=\frac{C_{N}}{2 P_{N}^{\prime}\left(x_{k}\right) \phi_{N+1}\left(x_{k}\right)}+\frac{2}{(N+1)(N+2)\left[P_{N+1}\left(x_{k}\right)\right]^{2}}, \tag{20}\\
& \text { for } k=1,2, \cdots, N, \\
& \alpha_{0}=\alpha_{N+1}=\frac{2}{(N+2)(N+1)}-\frac{C_{N}}{2(N+1) \phi_{N+1}(1)}, \tag{21}\\
& \beta_{k}=\frac{N+2}{2(N+1)} \frac{C_{N}}{\left[P_{N}\left(\xi_{k}\right)-\xi_{k} P_{N+1}\left(\xi_{k}\right)\right] \phi_{N+1}^{\prime}\left(\xi_{k}\right)}, \quad k=1,2, \cdots, N+1, \tag{22}
\end{align*}
$$

where $C_{N}=2^{2 N+3}[(N+1)!]^{2} /(2 N+3)!$.
Appendix. Computer program. In this appendix, we describe a FORTRAN program for the construction of the quadrature formula (1). A listing of this program is reproduced in the supplement at the end of this issue. A program for the construction of the quadrature formula (11) may be obtained from the authors.

The program consists of three subroutines: the main subroutine KRONRO and two auxiliary subroutines ABWE1 and ABWE2, which are called by KRONRO.

In KRONRO the coefficients of the polynomial $\phi_{N+1}(x)$ are calculated.
In ABWE1 the abscissas x_{k} and weights α_{k} are calculated.
In ABWE2 the abscissas ξ_{k} and weights β_{k} are calculated.
The abscissas are calculated using Newton-Raphson's method. Starting values for this iterative process are provided by [6]

$$
x_{k} \simeq\left(1-\frac{1}{8 N^{2}}+\frac{1}{8 N^{3}}\right) \cos \left(\frac{2 k-1 / 2}{2 N+1} \pi\right)
$$

and

$$
\xi_{k} \simeq\left(1-\frac{1}{8 N^{2}}+\frac{1}{8 N^{3}}\right) \cos \left(\frac{2 k-3 / 2}{2 N+1} \pi\right)
$$

The program has been tested on the computer IBM 370/155 of the Compuiting Centre of the University of Leuven, for $N=2(1) 50(10) 200$. The computations were carried out in double precision (approximately 16 significant figures). For $N=200$, the maximal absolute error of the abscissas is 8.6×10^{-16} and of the weights 3.3×10^{-15}.

For $N=50$, the computing time is 1.7 sec ., for $N=100,6.4 \mathrm{sec}$. and for $N=200$, 24.7 sec .

Acknowledgement. This research was supported in part by the Fonds voor Kollektief Fundamenteel Onderzoek under Grant No. 10.174.

Applied Mathematics Division

Katholieke Universiteit Leuven
Heverlee, B-3030, Belgium

1. A. S. Kronrod, Nodes and Weights for Quadrature Formulas, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 32 \#597; \#598.
2. T. N. L. Patterson, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856. MR 39 \#3701.
3. G. Szegö, "Uber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," Math. Ann., v. 110, 1935, pp. 501-513.
4. W. Gautschi, "On the construction of Gaussian quadrature rules from modified moments," Math. Comp., v. 24, 1970, pp. 245-260. MR 44 \#2341a.
5. C. W. Clenshaw, Chebyshev Series for Mathematical Functions, National Physical Laboratory Mathematical Tables, vol. 5, Her Majesty's Stationary Office, London, 1962. MR 26 \# 362.
6. F. G. Tricomi, Vorlesungen über Orthogonalreihen, Die Grundlehren der math. Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 76, Springer-Verlag, Berlin, 1955. MR 17, 30.

[^0]: Received May 15, 1972, revised March 2, 1973.
 AMS (MOS) subject classifications (1970). Primary 65D30; Secondary 33A65.

